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Abstract: Real-time anomaly detection is essential for promptly identifying unexpected patterns in high-velocity
data streams across domains such as cybersecurity, industrial monitoring, and finance. This study presents a novel
hybrid ensemble framework that integrates an Isolation Forest for rapid outlier scoring, an LSTM autoencoder for
temporal—frequency sequence reconstruction, and an ADWIN-based drift detector for adaptive windowing. A Kafka-
based ingestion pipeline simulates streaming conditions on benchmark datasets—including the Numenta Anomaly
Benchmark (NAB) and KDD Cup 1999 network flows—enabling evaluation under varied anomaly rates and feature
dimensionalities. Statistical, temporal, and frequency-domain features are extracted per time window and projected
into a lower-dimensional subspace via incremental PCA. The ensemble fuses submodel scores using dynamically
adaptive weights to maintain high precision and recall amidst concept drift. Experimental results demonstrate that
the proposed approach achieves an average Fi-score of 93.0%—improving by approximately 7% and 6% over static
Isolation Forest and LSTM baselines, respectively—while sustaining sub-second detection delays on both server
(28.4 ms) and edge (112.1 ms) platforms. Resource profiling indicates efficient CPU utilization (<75%) and
manageable memory footprints. These findings validate the framework’s effectiveness, adaptability, and
deployability in real-time monitoring applications.

Keywords: real-time anomaly detection; streaming data; ensemble learning; concept drift adaptation; edge
deployment; Isolation Forest; LSTM autoencoder; ADWIN.

1. Introduction

Real-time anomaly detection refers to the ability to identify unexpected or deviant patterns within continuous streams
of data as they occur, enabling immediate responses that can mitigate risks in critical systems such as network
security, industrial monitoring, and financial fraud prevention. As data volumes and velocities increase, traditional
batch-processing approaches become insufficient; systems must detect anomalies with minimal latency while
maintaining high accuracy (Chandola, Banerjee, & Kumar, 2009). The need for rapid detection arises from the
potential severity of undetected anomalies—ranging from undetected cyberattacks to unanticipated equipment
failures—making real-time detection a pivotal component of resilient, adaptive infrastructures.

Early foundational surveys laid the groundwork by categorizing anomaly detection techniques into statistical,
proximity-based, and classification-based methods. Chandola et al. (2009) provided a systematic overview,
highlighting that while statistical methods such as z-scores and control charts offer simplicity and interpretability,
they often struggle under high-dimensional, non-stationary data streams. Similarly, Ahmed, Mahmood, and Hu
(2016) emphasized the utility of sliding-window statistics—exponentially weighted moving averages and variance
control charts—but noted their vulnerability to concept drift, where the “normal” baseline evolves over time. These
limitations have driven subsequent research toward hybrid frameworks that combine lightweight statistical filters
with more sophisticated adaptive algorithms.

Dimensionality reduction techniques have been employed to manage the computational burden of high-velocity
streams. Principal component analysis (PCA) was among the first to be adapted for network traffic anomaly
detection, allowing monitoring of deviations in subspaces representing the most variance (Lakhina, Crovella, & Diot,
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2004). Ringberg et al. (2007) further refined PCA-based detectors by introducing adaptive thresholding mechanisms
that reduce false alarms in the presence of normal variability. However, PCA’s linearity assumption limits its ability
to capture complex, nonlinear interactions inherent in modern network and sensor data, motivating a shift toward
machine learning and ensemble methods.

Isolation Forest introduced an alternative ensemble-based approach by explicitly modeling “normal” data through
randomized partitioning, isolating anomalies in fewer splits due to their rarity (Liu, Ting, & Zhou, 2008). Its linear
time complexity and memory efficiency made it attractive for large datasets, and later research extended it to
streaming contexts via incremental or reservoir sampling updates. Aggarwal (2015) surveyed one-class support
vector machines (SVMs) as another kernel-based approach, though their quadratic complexity and sensitivity to
hyperparameters posed deployment challenges. Hybrid models, such as those combining autoencoder feature
extraction with one-class SVM classification, have aimed to leverage representation learning while maintaining
robust decision boundaries (Erfani, Rajasegarar, Karunasekera, & Leckie, 2016).

Deep learning methods have demonstrated remarkable success in capturing temporal and spatial patterns. LSTM-
based models for sequence modeling were applied to detect anomalies in spacecraft telemetry, reducing false
positives by learning long-term dependencies (Hundman, Constantinou, Laporte, Colwell, & Soderstrom, 2018).
Generative adversarial networks (GANs) further advanced detection by training a generator to synthesize “normal”
time series and flagging high reconstruction errors as anomalies (Gao, Saligrama, & Vishwanathan, 2020). Despite
their accuracy, these models often require substantial computational resources and offline training phases,
challenging their direct application in resource-constrained, low-latency environments.

A critical challenge in real-time detection is concept drift—shifts in the underlying data distribution due to
seasonality, equipment aging, or evolving network behaviors. Guha, Mishra, Motwani, and O’Callaghan (2016)
introduced drift-aware frameworks such as ADWIN (Adaptive Windowing), which dynamically resize processing
windows based on statistical tests for distributional changes. You, Yan, and Kim (2021) improved upon this by
designing an adaptive windowing algorithm that calibrates its sensitivity to drift rates, balancing the trade-off
between responsiveness and noise tolerance. Nonetheless, fully unsupervised drift adaptation—with no labeled
feedback—remains an open problem, particularly for high-dimensional, multi-modal streams.

Explainability has gained prominence as stakeholders demand interpretable insights into anomaly causes. Ren, Xu,
Liao, Hao, and Liu (2019) proposed transparent predictive models that accompany anomaly scores with feature-
importance explanations, aiding human analysts in root-cause identification. Zimek and Filzmoser (2020) argued for
“there and back again” workflows, where expert-validated anomalies are reintegrated into model updates to refine
thresholds and explanations over time. Such human-in-the-loop systems seek to balance automation speed with
domain expertise, fostering trust in automated detection pipelines.

Applications of real-time anomaly detection span diverse domains. In cybersecurity, streaming network traffic
analysis can reveal zero-day exploits and distributed denial-of-service attacks as they unfold (Ahmed et al., 2016).
Industrial IoT deployments leverage continuous sensor monitoring to preempt mechanical faults and schedule
proactive maintenance (Xu, Gao, Zhao, & Li, 2018). Financial institutions employ real-time transaction scoring to
detect fraudulent behavior, adapting models to rapidly shifting fraud patterns (Ren et al., 2019). Edge computing
implementations further push detection closer to data sources, reducing latency and bandwidth demands but
necessitating lightweight model architectures (Xu & Li, 2022).

Despite significant progress, benchmarking and reproducibility in streaming scenarios are nascent. Public datasets
like the Numenta Anomaly Benchmark and KDD Cup network streams offer starting points but often lack realistic
noise levels, multi-rate sampling, and multi-modal correlations found in production systems. Xu and Li (2022) called
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for richer benchmarks that incorporate end-to-end pipelines—including edge-to-cloud integrations—and mixed
supervised—unsupervised evaluation protocols to reflect real deployment conditions.

In summary, real-time anomaly detection has evolved from simple statistical filters to sophisticated, adaptive
ensembles and deep neural networks. Key open challenges include drift-resilient, unsupervised learning; resource-
efficient edge deployment; and explainable decision support. Addressing these challenges will require innovations in
lightweight model design, standardized evaluation frameworks, and closer integration of human expertise with
automated detection—paving the way for robust, trustworthy real-time monitoring systems.

2. Review of Literature

Real-time anomaly detection has emerged as a critical research area, driven by the need to identify unusual patterns
in streaming data promptly and accurately. Early foundational work by Chandola, Banerjee, and Kumar (2009)
provided a comprehensive survey of anomaly detection techniques, categorizing them into statistical, proximity-
based, and classification-based methods. They highlighted the trade-off between detection accuracy and
computational efficiency, setting the stage for later research on streaming scenarios where latency is paramount
(Chandola et al., 2009).

In the context of network security, Lakhina, Crovella, and Diot (2004) pioneered network-wide anomaly diagnosis
using principal component analysis (PCA), demonstrating that high-dimensional traffic matrices could be monitored
for deviations with reasonable computational overhead. This approach was further refined by Ringberg et al. (2007),
who examined the sensitivity of PCA-based detectors to parameter choices and proposed adaptive thresholding to
reduce false alarms (Ringberg, Soule, Rexford, & Diot, 2007). However, PCA’s reliance on linear assumptions
limited its ability to capture complex, nonlinear relationships in modern traffic, inspiring development of machine-
learning—based methods.

Isolation Forest, introduced by Liu, Ting, and Zhou (2008), represented a shift toward ensemble-based approachesthat
explicitly model “normal” behavior by random partitioning of feature space. Its efficiency and scalability made it
suitable for large datasets, and later adaptations enabled incremental updates for streaming data (Liu, Ting, & Zhou,
2008). Similarly, one-class SVM variants, as surveyed by Aggarwal (2015), provided a kernelized framework for
anomaly detection. Yet their batch nature and sensitivity to parameter tuning posed challenges in real-time settings,
motivating research into incremental and online SVMs (Aggarwal, 2015).

Statistical methods remain attractive for their interpretability and low resource footprint. Ahmed, Mahmood, and Hu
(2016) reviewed network anomaly detection techniques and emphasized sliding-window statistics—z-scores,
EWMA (exponentially weighted moving average), and control charts—as lightweight filters capable of flagging
abrupt changes with minimal delay (Ahmed, Mahmood, & Hu, 2016). However, these methods often struggle with
gradual drifts in baseline behavior, prompting efforts to integrate drift-detection mechanisms such as ADWIN
(Adaptive Windowing) (Guha et al., 2016; You, Yan, & Kim, 2021).

Deep learning approaches have achieved remarkable detection performance by learning complex temporal and spatial
patterns. Hundman et al. (2018) applied LSTM networks to detect spacecraft anomalies in telemetry data, showing
that sequence models could capture long-term dependencies and reduce false positives compared to traditional
methods (Hundman et al., 2018). Gao, Saligrama, and Vishwanathan (2020) extended this idea with TadGAN, a
GAN-based framework that synthesizes “normal” time series and detects deviations through reconstruction errors
(Gao, Saligrama, & Vishwanathan, 2020). While these methods improve accuracy, their computational demands and
training requirements challenge real-time deployment, especially on resource-constrained edge devices.
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Hybrid and ensemble strategies aim to balance speed and accuracy. Erfani et al. (2016) combined deep feature
extraction with one-class SVM classifiers, achieving high detection rates on high-dimensional streaming data by

periodically retraining the SVM on autoencoder-derived embeddings (Erfani, Rajasegarar, Karunasekera, & Leckie,
2016). Xu and Li (2022) proposed an online ensemble of lightweight detectors, dynamically weighting models based
on recent performance to adapt to evolving data distributions (Xu & Li, 2022). These adaptive ensembles mitigate
individual model weaknesses and exhibit robustness to concept drift.

Concept drift—the evolution of “normal” behavior over time—remains a central challenge. Guha et al. (2016)
introduced drift-aware frameworks that adjust model parameters or refresh training windows when statistical tests
signal distributional changes. You, Yan, and Kim (2021) developed an adaptive windowing algorithm that adjusts its
window size based on detected drift rates, balancing responsiveness and noise suppression. Nevertheless, fully
unsupervised drift adaptation without labeled feedback is still an open research problem.

Explainability is increasingly recognized as vital for trust and operational use. Ren et al. (2019) proposed predictive
models with interpretable anomaly scores, augmenting detection alerts with feature-importance explanations to help
analysts understand root causes (Ren et al., 2019). Zimek and Filzmoser (2020) advocated for “there and back again”
approaches, where detected anomalies are validated and fed back into the model to refine explanations and reduce
false positives over time (Zimek & Filzmoser, 2020).

Real-time anomaly detection’s application breadth continues to expand. Xu et al. (2018) demonstrated IoT data
stream monitoring for industrial sensors, highlighting techniques for handling heterogeneous and missing data
common in edge environments (Xu, Gao, Zhao, & Li, 2018). Ren et al. (2019) evaluated streaming fraud detection
in financial transactions, showing that online learning combined with feature-based drift detection could maintain
high precision in nonstationary financial data (Ren et al., 2019). These case studies underscore the importance of
domain-specific feature engineering and computational optimizations.

Despite significant advances, benchmarking and reproducibility lag behind. Standardized streaming datasets such as
the Numenta Anomaly Benchmark and KDD Cup network streams provide initial testbeds, but they often lack
realistic noise, multi-rate sampling, and multi-modal sensor data. Xu and Li (2022) called for richer benchmarks that
reflect industrial deployments, including edge-to-cloud pipelines and mixed supervised—unsupervised settings (Xu
& Li, 2022).

In summary, the literature on real-time anomaly detection spans statistical filters, machine learning, deep neural
networks, and hybrid ensembles, each offering trade-offs between latency, accuracy, and adaptability. Key open
challenges include unsupervised drift adaptation, resource-efficient edge deployment, and explainable model outputs.
Building on this foundation, future work may focus on lightweight yet powerful architectures, standardized
evaluation protocols, and human-in-the-loop systems that integrate automated alerts with expert feedback to
continuously refine detection performance.

3. Research Methodology
3.1 Research Design

An exploratory—descriptive approach is adopted, combining algorithm development with empirical evaluation on
benchmark streaming datasets. The study proceeds in three phases: (1) offline prototyping to validate model choices,
(2) integration of online learning and drift-adaptation modules, and (3) end-to-end real-time evaluation.
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3.2 Data Sources and Acquisition
Two publicly available streaming benchmarks are used:

e Numenta Anomaly Benchmark (NAB): Univariate time series from domains such as CPU usage and
sensor logs.

KDD Cup 1999 network traffic streams: Multivariate network flow records labeled for various attack
types.

Data are ingested via a Kafka-based pipeline to simulate high-velocity arrival. Messages are timestamped and
partitioned into non-overlapping windows of fixed duration (e.g., 1 second) for batch processing (Lakhina, Crovella,
& Diot, 2004).

3.3 Data Preprocessing

e  Missing-Value Handling: Linear interpolation for univariate streams; k-NN imputation (k=5) for
multivariate gaps (Ahmed, Mahmood, & Hu, 2016).

Normalization: Sliding-window z-score normalization to maintain stability under evolving distributions.

Windowing Strategy: A dual-window scheme: a short “detection” window (W) for immediate scoring and
a longer “reference” window (W-) for drift detection (Guha, Mishra, Motwani, & O’Callaghan, 2016).

3.4 Feature Engineering

e  Statistical Features: Mean, variance, skewness, and kurtosis over Wi.

Temporal Features: Lag-1 and lag-t differences to capture abrupt changes.

Frequency-Domain Features: Short-time Fourier transform (STFT) energy bands for periodicity.

Dimensionality Reduction: Incremental PCA projects features into a lower-dimensional subspace,
mitigating computational cost (Ringberg, Soule, Rexford, & Diot, 2007).

3.5 Model Architecture
The core detection model is a hybrid ensemble combining:

1. Isolation Forest (iForest): For rapid, tree-based outlier scoring on statistical features (Liu, Ting, & Zhou,

2008).

2. LSTM Autoencoder: For sequence reconstruction on temporal—frequency embeddings (Hundman et al.,
2018).

3. Adaptive Windowing Drift Detector (ADWIN): Monitors reconstruction error distributions to trigger

model updates (Guha et al., 2016).

Each submodel outputs an anomaly score; scores are fused via a weighted average, where weights adapt over time
based on recent detection precision (Xu & Li, 2022).
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3.6 Online Learning and Concept Drift Adaptation

e  Mini-Batch Updates: Every B windows (e.g., B =100), the LSTM autoencoder undergoes partial retraining
using the latest W2 data.

ADWIN Triggers: If the error distribution in W2 diverges significantly (p <.01, two-sided test), the iForest
is rebuilt on the most recent N instances (N = 5,000).

Adaptive Weights: Following You, Yan, and Kim (2021), the fusion weights are recalibrated by evaluating
each submodel’s Fi-score on labeled validation samples extracted periodically.

3.7 Explainability Module
To facilitate root-cause analysis, the framework generates:

e Feature-Importance Reports: SHAP values computed for each flagged window, indicating top three
contributing features (Ren, Xu, Liao, Hao, & Liu, 2019).

Sequence Highlighting: For LSTM detections, attention-based saliency maps identify time steps with
highest reconstruction error.

3.8 Implementation Details

e Environment: Python 3.8, Scikit-learn 1.0.2, TensorFlow 2.6, Kafka 2.8.

Hardware: Server with Intel Xeon E5-2620 v4, 64 GB RAM; edge tests on Raspberry Pi 4 (4 GB RAM).

Latency Optimization: Critical code paths (feature extraction, iForest scoring) are implemented in Cython;
batch inference parallelized across 4 threads.

3.9 Evaluation Protocol

1. Detection Metrics: Precision, recall, Fi-score, and detection delay (time between anomaly occurrence and
first alert) are computed for each dataset.

N

Resource Profiling: CPU utilization, memory footprint, and per-window processing time are logged to
assess real-time viability.

w

Comparative Baselines:
o Standalone iForest (static)
o Standalone LSTM autoencoder (static)

o Sliding-window z-score detector (thresholded at 3c)

>

Statistical Significance: McNemar’s test compares Fi-scores of the proposed model versus baselines at o
=.05.

By integrating lightweight statistical filters, adaptive ensemble learning, and explainability, this methodology aims
to achieve sub-second anomaly detection with robust drift adaptation and actionable alerts—fulfilling the real-time
requirements of critical monitoring applications.
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4. Results and Analysis

This chapter presents the empirical findings from evaluating the proposed real-time anomaly detection framework
against baseline methods. We report: (1) dataset characteristics; (2) detection performance metrics; (3) detection
latency; and (4) resource utilization. All results are averaged over three independent runs.

4.1 Dataset Characteristics

To simulate streaming conditions, we processed the NAB and KDD Cup streams through our Kafka pipeline.
Table 1 summarizes the key characteristics of each dataset segment used in evaluation.

Dataset Type Length (windows) | Features per window | Anomaly Rate (%)
NAB—CPU Utilization Univariate 10,000 5 (statistical) 2.5
NAB—Sensor Log Univariate 12,000 6 (statistical + STFT) | 3.1
KDD Cup 99—DoS Attack | Multivariate | 15,000 12 (mixed) 1.8
KDD Cup 99—Probe Multivariate | 15,000 12 (mixed) 1.4

4.2 Detection Performance

We compared the proposed ensemble (iForest + LSTM Autoencoder + ADWIN) against three baselines: static
Isolation Forest, static LSTM Autoencoder, and sliding-window z-score detector (3o threshold). Performance was
measured by Precision, Recall, and Fi-score.

Table 2 Results on each dataset.

Method Precision (%) | Recall (%) | Fi-Score (%)
Proposed Ensemble 94.2 91.8 93.0
Isolation Forest (static) 88.5 82.3 85.3
LSTM Autoencoder (static) | 90.1 84.5 87.2
Sliding-window z-score (30) | 75.4 68.7 71.9

When broken down by dataset:

e On NAB—CPU Utilization, the ensemble achieved an F1 of 93.5%, outperforming static iForest (87.9%)
and LSTM (89.8%).

e  On KDD—DoS Attack, the ensemble’s F1 was 92.4%, compared to 86.2% (iForest) and 88.0% (LSTM).
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Figure 1 Detection Performance
4.3 Detection Latency

Detection delay measures the average time (in milliseconds) between an anomaly’s occurrence and its first alert.
Tests were conducted on the server environment (Xeon) and on the edge (Raspberry Pi).

Table 3 reports per-window processing time and mean detection delay.

Environment Per-Window Time (ms) | Mean Delay (ms)
Server (4 threads) | 12.5 28.4
Edge Device 48.7 112.1

Even on Raspberry Pi, the framework stays below 120 ms mean delay—suitable for many real-time applications.
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Figure 2 reports per-window processing time and mean detection delay
4.4 Resource Utilization

Resource profiling measured average CPU and memory usage during a 60-second continuous run on each
environment.

Table 4 presents these metrics.

Environment | CPU Utilization (%) | Memory Footprint (MB)

Server 352 520

Edge Device | 72.8 380

The Cython optimizations reduced processing overhead, keeping peak CPU under 75% on the edge.
4.5 Drift Adaptation Events

We logged the number of ADWIN-triggered model updates during each run, indicating concept-drift occurrences.

Table 5 shows update counts per dataset.

Dataset ADWIN Triggers (avg.)

NAB—CPU Utilization 4

NAB—Sensor Log 5

KDD Cup 99—DoS Attack | 2

KDD Cup 99—Probe 1
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Frequent triggers on sensor logs reflect higher non-stationarity, demonstrating the framework’s responsiveness to
evolving baselines.

4.6 Discussion of Findings

The proposed ensemble consistently outperforms static baselines across all datasets, achieving an average Fi-score
improvement of ~7% over static Isolation Forest and ~6% over static LSTM Autoencoder. Low detection delays
(sub-second) on both server and edge platforms confirm real-time viability. Resource profiling indicates acceptable
CPU and memory footprints, with edge optimizations ensuring deployability on constrained devices.

Drift adaptation via ADWIN maintained high recall even when baseline behavior shifted, as evidenced by stable Fi-
scores across datasets with varying non-stationarity. The number of drift-triggered updates correlated with known
pattern changes in the datasets, validating the adaptive windowing approach.

In summary, these results demonstrate that integrating lightweight ensemble learning, online drift detection, and code
optimizations yields a robust real-time anomaly detection framework suitable for diverse streaming applications.

5. Conclusion

In conclusion, this study demonstrates that a thoughtfully designed hybrid ensemble—combining fast Isolation Forest
scoring, deep LSTM autoencoder reconstruction, and ADWIN-driven drift adaptation—can deliver robust real-time
anomaly detection across diverse streaming environments. By leveraging incremental PCA for dimensionality
reduction, Kafka-based ingestion for realistic throughput, and dynamic score fusion with adaptive weighting, the
proposed framework consistently outperformed static baselines by 6—7% in Fi-score while maintaining sub-second
detection delays on both high-performance servers and resource-constrained edge devices. The inclusion of
explainability modules further enhances operational transparency, enabling analysts to pinpoint root causes and trust
automated alerts. Resource profiling confirms the solution’s practical deployability, with CPU utilization kept below
75% and modest memory requirements. Overall, these findings validate that integrating lightweight statistical filters,
deep learning, and adaptive online learning yields a scalable, accurate, and interpretable real-time anomaly detection
system, well suited for critical applications in cybersecurity, industrial [oT, and financial fraud prevention.
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